Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If ∫01 e−xdx1+ex=loge⁡(1+e)+K , then find the value of k is

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

21e+log2

b

1e-log2

c

−1e+log2

d

1e+log2

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

I=∫01 e−xdx1+ex=∫01 dxex1+ex Put ex=z or exdx=dz or dx=dzex=dzz∴ I=∫1e dzz2(1+z)=∫1e 11+z−z−1z2dz=log(1+z)−log⁡z−1z1e=log(1+e)−log⁡e−1e−(log2−log1−1)=log(1+e)−1e−log2∴ K=−1e+log2
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring
If ∫01 e−xdx1+ex=loge⁡(1+e)+K , then find the value of k is