Q.

If the equation of the locus point equidistant from the points a1,b1 and a2,b2 is a1−a2x+b1−b2y+c=0, then the value of c is

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

a12−a22−b22

b

a12+b22−a22−b22

c

12a12+a22+b12+b32

d

12a22+b22−a12−b12

answer is D.

(Unlock A.I Detailed Solution for FREE)

Detailed Solution

Let h,k be the points on the locus. Then by the given conditions,h−a2+k−b12=h−a22+k−b22or 2ha1−a2+2kb1−b2+a22+b22−a12−b12=0or 2ha1−a2+kb1−b2+12a22+b22−a12−b12=0         …(1)Also since h,k lies on the given locus, we have a1−a2h+bb1−b2k+c=0                                         …(2)Comparing (1) and (2) , we get c=12a22+b22−a12−b12
Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon