Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If f(x)=cos⁡xx12sinxx22xtan⁡xx1 then limx→0 f′(x)x=

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

1

b

-1

c

2

d

-2

answer is D.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

f(x)=cos⁡xx2−2x2−x[2sin⁡x−2xtan⁡x]+12xsin⁡x−x2tan⁡x=−x2cos⁡x−2xsin⁡x+2x2tan⁡x+2xsin⁡x−x2tan⁡x=−x2cos⁡x+x2tan⁡xf1(x)=−2xcos⁡x+x2sin⁡x+2xtan⁡x+x2sec2⁡xlimx→0 f1(x)x=limx→0 −2xcos⁡x+x2sin⁡x+2xtan⁡x+x2sec2⁡xx=limx→0 −2cos⁡x+xsin⁡x+2tan⁡x+xsec2⁡x=−2+0+0+0=−2
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring