Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If fx=xcos⁡xex6sin5⁡xx4sec⁡xtan3⁡x1020, then the value of ∫−π2π2 fxdx =

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

answer is 0000.00.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Given that fx=xcos⁡xex6sin5⁡xx4sec⁡xtan3⁡x1020⇒f-x=−xcos⁡xex6−sin5⁡xx4sec⁡x−tan3⁡x1020=−f(x)∴f(x) is an odd function ∴∫−π2π2 f(x)dx=0 ∵∫−aa f(x)dx=0, when f(x) is odd function Therefore, the correct answer is 0000.00
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
personalised 1:1 online tutoring