If ∑i=19 xi−5=9 and ∑i=19 xi−52=45, then the standard deviation of the 9 items xi,x2,…,x9 is
see full answer
Your Exam Success, Personally Taken Care Of
1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya
a
4
b
2
c
3
d
9
answer is B.
(Unlock A.I Detailed Solution for FREE)
Best Courses for You
JEE
NEET
Foundation JEE
Foundation NEET
CBSE
Detailed Solution
We have, ∴ ∑i=19 xi−5=9 and ∑i=19 xi−52=45⇒ ∑i=19 xi−45=9 and ∑i=19 xi2−10xi+25=45 ⇒ ∑i=19 xi=54 and ∑i=19 xi2−10∑i=19 xi+25×9=45⇒ ∑i=19 xi=54 and ∑i=19 xi2−10×54+225=45⇒ ∑i=19 xi=54 and ∑i=19 xi2=360∴ Variance =19∑i=19 xi2−19∑i=19 xi2⇒ Variance =3609−5492=40−36=4Hence, standard deviation =4=2. ALITER Let the variable U take values u1,u2,…,u9 such that ui=xi−5,i=1,2,…,9. Then U¯=X¯−5 and Var(U)=Var(X)Now, Var(U)=19∑i=19 ui2−19∑i=19 ui2 =19∑i=19 xi−52−19∑i=19 xi−52=459−992=5−1=4∴ σU=Var(U)=2