Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If I=∫1+x21−x2dx then I is equal to

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

12log2x+1+x22x−1+x2+logx+1+x2+C

b

2log2x+1+x22x−1+x2−logx+1+x2+C

c

−12log2x+1+x22x−1+x2−logx+1+x2+C

d

12log2x+1+x22x−1+x2−logx+1+x2+C

answer is D.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

I=∫1+x21−x2  1+x21+x2dx=∫1+x2dx1−x21+x2I=∫1dx1−x21+x2+∫x2dx1−x21+x2I=∫dx1−x21+x2−∫−x2dx1−x21+x2I=∫dx1−x21+x2−∫1−x2−1dx1−x21+x2I=∫11−x21+x2dx−∫1−x2dx1−x21+x2+∫1dx1−x21+x2I=2∫dx1−x21+x2−∫dx1+x2I=2∫dxx21x2−1x1+1x2−log⁡x+1+x2Put 1x2+1=t2 in 1st  integral −2x3dx=dt2tdxx3=−tdt=I=2∫−tdtt2−2t−log⁡x+x2+1=I=2∫tdt(2)2−t2−log⁡x+x2+1+C=I=2⋅122log⁡2+t2−t−log⁡x+1+x2+C=I=12log⁡2+1x2+12−1x2+1−log⁡x+1+x2+C=I=12 log2x+1+x22x−1+x2 −logx+1+x2+C
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring