Q.
if the integral ∫5tanxtanx−2dx=x+alog |sinx−2cosx|+k, then a is equal to
see full answer
Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!
Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya
a
-1
b
-2
c
1
d
2
answer is D.
(Unlock A.I Detailed Solution for FREE)
Ready to Test Your Skills?
Check your Performance Today with our Free Mock Test used by Toppers!
Take Free Test
Detailed Solution
Given integral ∫5tanxtanx−2dxTo find The value of a ', if ∫5tanxtanx−2dx =x+alog|sinx−2cosx|+k ---iNow, let us assume that I=∫5tanxtanx−2dxOn multiplying by cos x in numerator anddenominator, we get I=∫5sinxsinx−2cosxdxThis special integration requires special substitutionof typeNr=ADr+BdDrdx,A and B are constant. Let 5sinx=A(sinx−2cosx)+B(cosx+2sinx)⇒0cosx+5sinx=(A+2B)sinx+(B−2A)cosxA+2B=5 and B−2A=0On solving the above two equations in A and B, we getA=1 and B=2 ⇒5sinx=(sinx−2cosx)+2(cosx+2sinx)⇒ I=∫5sinxsinx−2cosxdx=∫(sinx−2cosx)+2(cosx+2sinx)(sinx−2cosx)dx=∫sinx−2cosxsinx−2cosxdx+2∫(cosx+2sinx)(sinx−2cosx)dx=∫1dx+2∫d(sinx−2cosx)(sinx−2cosx)=x+2log|(sinx−2cosx)|+k ----iiwhere, k is the constant of integration.Now, by comparing the value of I in Eqs. (i) and (ii),we get .
Watch 3-min video & get full concept clarity