Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

θ

b

θ2

c

θ4

d

None

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Given that the direction cosines of two lines are l1,m1,n1 andl2,m2,n2Given  θ is the acute angle between the lines then cosθ=l1l2+m1m2+n1n2The direction ratios of angular bisector of the two lines whose direction cosines are l1,m1,n1 and l2,m2,n2 are l1−l2,m1−m2,n1−n2Consider the value of l1−l22+m1−m22+n1−n22=l12+m12+n12+l22+m22+n22+2l1l2+2m1m2+2n1n2=2−2cosθ=22sin2θ2=4sin2θ2It implies thatl1−l22+m1−m22+n1−n22=2sinθ2The direction cosines of angular bisector of given two lines are l1−l22sinθ2=m1−m22sinθ2=n1−n22sinθ2Comparing the above direction cosines with l1−l22 sinα,m1−m22 sinα,n1−n22 sinα, we have α=θ2.It implies that 2α=θ
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring