Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If limx→0 ax−e4x−1axe4x−1=b exists finitely then 2(a+b)=

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

-1

b

-7

c

1

d

7

answer is D.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

limx→0 ax−e4x−1axe4x−1=b exists finitely⇒ limx→0 a−4e4x−14xae4x−1=b  exists finitelyThe numerator becomes a-4 when x→0 and the denominator tends to zero. Therefore, if a -4≠0, LHS→∞ whereas RHS is finite. Therefore, a -4 = 0 i.e. a = 4.When a=4 limx→0 a−4e4x4x−1ae4x−1=b⇒ limx→0 1−e4x−14xe4x−1=b ⇒ limx→0 1−1+(4x)2!+(4x)23!+…4x+(4x)22!+(4x)33!+…=b⇒−12=b∴ 2(a+b)=24−12=7
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon