Q.

If limx→0 2ax+(a−1)sin⁡xtan3⁡x=l, then a+l is equal to

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

23

b

13

c

29

d

49

answer is D.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

We havelimx→0 2ax+(a−1)sin⁡xtan3⁡x=l⇒ limx→0 2a+(a−1) sin⁡xxx2tan⁡xx3=lWe observe that the numerator on LHS tends to 3a-1 and the denominator tends to 0. So, the limit will be a finite number I only if 3a−1=0 i.e., a=13∴ limx→0 3(1−sin⁡x)x2tan⁡xx3=1⇒ limx→0 x−sin⁡xx3tan⁡xx3=3l2⇒ 16=3l2⇒l=19        ∵limx→0 x−sin⁡xx3=16Hence, a+l=13+19=49
Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon