If ∫lnexx+1+lnxx21+(xlnx)lne2xxdx=f(x)+C Where C is arbitrary Constant, then eef2−1 is =
see full answer
Your Exam Success, Personally Taken Care Of
1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya
a
4
b
2
c
1
d
16
answer is A.
(Unlock A.I Detailed Solution for FREE)
Best Courses for You
JEE
NEET
Foundation JEE
Foundation NEET
CBSE
Detailed Solution
Let I=∫lnexx+1+lnxx21+(xlnx)lne2xxdx Use (1)logm+logn=logmn(2)logam=mloga=∫ln(e)+lnxx+1+(x⋅ln(x))21+(x⋅ln(x))⋅lne2+lnxxdx=∫1+(x+1)ln(x)+x(ln(x))21+(x⋅ln(x))⋅(2+x⋅lnx)dx=∫1+lnx+xlnx+x(lnx)21+2(xlnx)+(xlnx)2dx=∫(1+xlnx)(1+lnx)(1+xlnx)2dx=∫1+lnx(1+xlnx)dx ∵∫f′(x)f(x)=ln|f(x)|+c=ln(1+xlnx)+C∴f(x)=ln(1+xlnx)⇒f(2)=ln|1+2ln2|⇒f(2)=ln|1+ln4|⇒ef(2)=1+ln4⇒ef(2)−1=ln4⇒eef(2)−1=4Therefore, the correct answer is (1).