Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If ∫ln⁡exx+1+ln⁡xx21+(xln⁡x)ln⁡e2xxdx=f(x)+C Where C is arbitrary Constant, then eef2−1  is =

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

4

b

2

c

1

d

16

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Let I=∫ln⁡exx+1+ln⁡xx21+(xln⁡x)ln⁡e2xxdx Use (1)log⁡m+log⁡n=log⁡mn(2)log⁡am=mlog⁡a=∫ln⁡(e)+ln⁡xx+1+(x⋅ln⁡(x))21+(x⋅ln⁡(x))⋅ln⁡e2+ln⁡xxdx=∫1+(x+1)ln⁡(x)+x(ln⁡(x))21+(x⋅ln⁡(x))⋅(2+x⋅ln⁡x)dx=∫1+ln⁡x+xln⁡x+x(ln⁡x)21+2(xln⁡x)+(xln⁡x)2dx=∫(1+xln⁡x)(1+ln⁡x)(1+xln⁡x)2dx=∫1+ln⁡x(1+xln⁡x)dx ∵∫f′(x)f(x)=ln⁡|f(x)|+c=ln⁡(1+xln⁡x)+C∴f(x)=ln⁡(1+xln⁡x)⇒f(2)=ln⁡|1+2ln⁡2|⇒f(2)=ln⁡|1+ln⁡4|⇒ef(2)=1+ln⁡4⇒ef(2)−1=ln⁡4⇒eef(2)−1=4Therefore, the correct answer is (1).
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring