Q.

If ∫ln⁡exx+1+ln⁡xx21+(xln⁡x)ln⁡e2xxdx=f(x)+C Where C is arbitrary Constant, then eef2−1  is =

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

4

b

2

c

1

d

16

answer is A.

(Unlock A.I Detailed Solution for FREE)

Detailed Solution

Let I=∫ln⁡exx+1+ln⁡xx21+(xln⁡x)ln⁡e2xxdx Use (1)log⁡m+log⁡n=log⁡mn(2)log⁡am=mlog⁡a=∫ln⁡(e)+ln⁡xx+1+(x⋅ln⁡(x))21+(x⋅ln⁡(x))⋅ln⁡e2+ln⁡xxdx=∫1+(x+1)ln⁡(x)+x(ln⁡(x))21+(x⋅ln⁡(x))⋅(2+x⋅ln⁡x)dx=∫1+ln⁡x+xln⁡x+x(ln⁡x)21+2(xln⁡x)+(xln⁡x)2dx=∫(1+xln⁡x)(1+ln⁡x)(1+xln⁡x)2dx=∫1+ln⁡x(1+xln⁡x)dx ∵∫f′(x)f(x)=ln⁡|f(x)|+c=ln⁡(1+xln⁡x)+C∴f(x)=ln⁡(1+xln⁡x)⇒f(2)=ln⁡|1+2ln⁡2|⇒f(2)=ln⁡|1+ln⁡4|⇒ef(2)=1+ln⁡4⇒ef(2)−1=ln⁡4⇒eef(2)−1=4Therefore, the correct answer is (1).
Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon