Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If Mxo,yo is the point on the curve 3x2−4y2=72 which is nearest to the line 3x+2y+1=0, then the value of xo+yo is equal to

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

3

b

-3

c

9

d

-9

answer is B.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Slope of the give line =−32 The points on the curve at which the tangent is parallel to the given line. So,  differentiating both sides with respect to x of 3x2−4y2=72 we get dydx=3x4y=−32( given )⇒xy=−2 Now 3xy2−4=72y2⇒y2=9⇒y=−3,3 So, points are (−6,3) and (6,−3) Now, distance of (−6,3) from the given line =−18+6+113=1113 And distance of (6,−3) from the given line =18−6+113=1313 Clearly, the required point is on (−6,3)=x0,yo (given)  So, xo=−6,yo=3 Hence x0+y0=−6+3=−3
Watch 3-min video & get full concept clarity

courses

No courses found

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
If Mxo,yo is the point on the curve 3x2−4y2=72 which is nearest to the line 3x+2y+1=0, then the value of xo+yo is equal to