If θ1,θ2,θ3,…,θn are in AP, whose common difference is d, then sin dsecθ1secθ2+secθ2secθ3+…+secθn−1secθn is equal to
see full answer
High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET
🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya
a
tanθn−tanθ2
b
tanθn+tanθ1
c
tanθn−tanθ1
d
None of these
answer is C.
(Unlock A.I Detailed Solution for FREE)
Best Courses for You
JEE
NEET
Foundation JEE
Foundation NEET
CBSE
Detailed Solution
Since,θ1,θ2,θ3,…,θn are in AP⇒ θ2−θ1=θ3−θ2=…=θn−θn−1=d (i)Now, taking only first termsindsecθ1secθ2=sindcosθ1cosθ2=sinθ2−θ1cosθ1cosθ2=sinθ2cosθ1−cosθ2sinθ1cosθ1cosθ2=sinθ2cosθ1cosθ1cosθ2−cosθ2sinθ1cosθ1cosθ2=tanθ2−tanθ1Similarly, we can solve other terms which will betanθ3−tanθ2,tanθ4−tanθ3,…∴sindsecθ1secθ2+secθ2secθ3+…+secθn−1secθn=tanθ2−tanθ1+tanθ3−tanθ2 +…+tanθn−tanθn−1 =−tanθ1+tanθn=tanθn−tanθ1