Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If θ1,θ2,θ3,…,θn are in AP, whose common difference is d, then  sin⁡ dsec⁡θ1sec⁡θ2+sec⁡θ2sec⁡θ3+…+sec⁡θn−1sec⁡θn is equal to

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

tan⁡θn−tan⁡θ2

b

tan⁡θn+tan⁡θ1

c

tan⁡θn−tan⁡θ1

d

None of these

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Since,θ1,θ2,θ3,…,θn are in AP⇒ θ2−θ1=θ3−θ2=…=θn−θn−1=d      (i)Now, taking only first termsin⁡dsec⁡θ1sec⁡θ2=sin⁡dcos⁡θ1cos⁡θ2=sin⁡θ2−θ1cos⁡θ1cos⁡θ2=sin⁡θ2cos⁡θ1−cos⁡θ2sin⁡θ1cos⁡θ1cos⁡θ2=sin⁡θ2cos⁡θ1cos⁡θ1cos⁡θ2−cos⁡θ2sin⁡θ1cos⁡θ1cos⁡θ2=tan⁡θ2−tan⁡θ1Similarly, we can solve other terms which will betan⁡θ3−tan⁡θ2,tan⁡θ4−tan⁡θ3,…∴sin⁡dsec⁡θ1sec⁡θ2+sec⁡θ2sec⁡θ3+…+sec⁡θn−1sec⁡θn=tan⁡θ2−tan⁡θ1+tan⁡θ3−tan⁡θ2 +…+tan⁡θn−tan⁡θn−1 =−tan⁡θ1+tan⁡θn=tan⁡θn−tan⁡θ1
Watch 3-min video & get full concept clarity

courses

No courses found

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon