Download the app

Questions  

If origin is the orthocentre of a triangle formed by the options (cosα,sinα,0),(cosβ,sinβ,0),(cosγ,sinγ,0) then cos(2αβγ)=

a
0
b
1
c
2
d
3

detailed solution

Correct option is D

OA=OB=OC;G=H=O(0,0,0)Equilateral trianglecosα+cosβ=−cosγ,sinα+sinβ=−sinγ,square and add cos(α−β)=−12cos(β−γ)=cos(γ−α)cos(2α−β−γ)=cos(α−β)−(γ−α)=1

Talk to our academic expert!

+91

Are you a Sri Chaitanya student?


Similar Questions

If  θ is an angle given by cosθ=cos2α+cos2β+cos2γsin2α+sin2β+sin2γ where α,β,γ are the angles made by a line with the axes OX,OY,OZrespectively then the value of θ is


phone icon
whats app icon