Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If  roots of x2−(a−3)x+a=0  are such that at least one of the roots of greater than 2, then

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

a∈[7,  9]

b

a∈[7,  ∞]

c

a∈[9,  ∞)

d

a∈[7,  9)

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

The given equation is x2−(a−3)x+a=0 Let α,β  are the roots of the given equationHere a=1,b=−(a−3),c=aThe dicriminant is D≥0   ⇒ (a−3)2−4a≥0  ⇒a2−10a+9≥0⇒a≤1    or  a≥9If both roots are less than or equal to 2, thenf(2)≥0, And sum of the roots α+β≤4⇒    a−3≤4    i.e., a≤7 ∴    Values  of a such that at least one root is greater than 2 are given by(−∞, 1]∪[9,  ∞)−(−∞,  7]=[9,  ∞)
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring
If  roots of x2−(a−3)x+a=0  are such that at least one of the roots of greater than 2, then