Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If sin⁡α=Asin⁡(α+β),A≠0,  thenThe value of tan⁡α isThe value of tan⁡β isWhich of the following is not the value of tan⁡(α+β) ?

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

Asin⁡β1−Acos⁡β

b

Asin⁡β1+Acos⁡β

c

Acos⁡β1−Asin⁡β

d

Asin⁡β1+Acos⁡β

e

sin⁡α(1+Acos⁡β)Acos⁡αcos⁡β

f

sin⁡α(1−Acos⁡β)Acos⁡αcos⁡β

g

cos⁡α(1−Asin⁡β)Acos⁡αcos⁡β

h

cos⁡α(1+Asin⁡β)Acos⁡αcos⁡β

i

sin⁡βcos⁡β−A

j

sin⁡αcos⁡αAcos⁡β−sin2⁡α

k

sin⁡αcos⁡αAcos⁡β+sin2⁡α

l

none of these

answer is , , .

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

sin α−Asin (α+β)−A(sin α cos β+sin β cos α)⇒sinα(1−Acosβ)=Asinβ cosα.....(i)⇒tan⁡α=Asin⁡β(1−Acos⁡β).....(ii)tan⁡β=sin⁡βcos⁡β=(1−Acos⁡β)tan⁡αAcos⁡β=(1−Acos⁡β)sin⁡αAcos⁡αcos⁡β  [from Eqs. (i)and(ii)] tan⁡(α+β)=tan⁡α+tan⁡β1−tan⁡αtan⁡β=Asin⁡β1−Acos⁡β+sin⁡βcos⁡β1−Asin⁡βsin⁡β(1−Acos⁡β)cos⁡β=Asin⁡βcos⁡β+sin⁡β−Asin⁡βcos⁡βcos⁡β−Acos2⁡β−Asin2⁡β=sin⁡βcos⁡β−AAlso, tan⁡(α+β)=tan⁡α+tan⁡β1−tan⁡αtan⁡β=sin⁡αcos⁡α+sin⁡α(1−Acos⁡β)Acos⁡αcos⁡β1−sin2⁡α(1−Acos⁡β)Acos2⁡αcos⁡β[from Eq. (ii)]=[Asin⁡αcos⁡β+sin⁡α−Asin⁡αcos⁡β]cos⁡αAcos2⁡αcos⁡β−sin2⁡α+Asin2⁡αcos⁡β=sin⁡αcos⁡αAcos⁡β−sin2⁡α
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
If sin⁡α=Asin⁡(α+β),A≠0,  thenThe value of tan⁡α isThe value of tan⁡β isWhich of the following is not the value of tan⁡(α+β) ?