Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If 3sin⁡ β=sin⁡(2α+β), then tan⁡(α+β)−2tan⁡ α is

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

independent of α

b

independent of β

c

dependent of both α and β

d

independent of both α and β

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

3sin⁡ β=sin⁡(2α+β),tan⁡(α+β)−2tan⁡α=tan⁡(α+β)−tan⁡α−tan⁡α=sin⁡(α+β)cos⁡(α+β)−sin⁡αcos⁡α−tan⁡α=sin⁡(α+β−α)cos⁡αcos⁡(α+β)−tan⁡α=sin⁡βcos⁡(α+β)cos⁡α−sin⁡αcos⁡α=sin⁡β−sin⁡αcos⁡(α+β)cos⁡(α+β)cos⁡α=2sin⁡β−[sin⁡(2α+β)−sin⁡β]2cos⁡(α+β)cos⁡α=−[sin⁡(2α+β)−3sin⁡β]2cos⁡(α+β)cos⁡α=0
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon