If sin3θsin(2θ+α)=cos3θcos(2θ+α) and tan2θ=λtan(3θ+α) then the value of λ is
see full answer
Your Exam Success, Personally Taken Care Of
1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya
answer is 2.
(Unlock A.I Detailed Solution for FREE)
Best Courses for You
JEE
NEET
Foundation JEE
Foundation NEET
CBSE
Detailed Solution
We havesin3θsin(2θ+α)=cos3θcos(2θ+α)=k(let)⇒ sin4θsinθsin(2θ+α)=cos4θcosθcos(2θ+α)=k⇒ cos4θ−sin4θ=k[cosθcos(2θ+α)−sinθsin(2θ+α)]⇒ cos2θ=kcos(3θ+α)-----iAlso,sin3θcosθsin(2θ+α)cosθ=sinθcos3θsinθcos(2θ+α)=k⇒ sin3θcosθ+sinθcos3θ =k(sin(2θ+α)cosθ+sinθcos(2θ+α))⇒ sinθcosθsin2θ+cos2θ=ksin(3θ+α)⇒ sin2θ=2ksin(3θ+α)---iiFrom (1) and (2), we get tan2θ=2tan(3θ+α)