Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If ∫sin⁡π4−x2+sin⁡2xdx=Atan−1⁡fx+B,f0=1, where A ,B  are constants, then the range  of A.fx is

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

−1,1

b

−2,2

c

0,1

d

−2,0

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Consider ∫sin⁡π4−x2+sin⁡2xdx=∫12(cos⁡x−sin⁡x)2+sin⁡2xdx Put sin⁡x+cos⁡x=t⇒(cos⁡x−sin⁡x)dx=dt And sin⁡2x=t2−1=12∫dtt2+1=12tan−1⁡t+c=12tan−1⁡(sin⁡x+cos⁡x)+c=Atan−1⁡(f(x))+B ( given )∴A=12,f(x)=sin⁡x+cos⁡x Now, A f(x)=12(sin⁡x+cos⁡x)=sin⁡x+π4∴ range of Af(x) is [−1,1]
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring