If ∫sinπ4−x2+sin2xdx=Atan−1fx+B,f0=1, where A ,B are constants, then the range of A.fx is
see full answer
Your Exam Success, Personally Taken Care Of
1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya
a
−1,1
b
−2,2
c
0,1
d
−2,0
answer is A.
(Unlock A.I Detailed Solution for FREE)
Best Courses for You
JEE
NEET
Foundation JEE
Foundation NEET
CBSE
Detailed Solution
Consider ∫sinπ4−x2+sin2xdx=∫12(cosx−sinx)2+sin2xdx Put sinx+cosx=t⇒(cosx−sinx)dx=dt And sin2x=t2−1=12∫dtt2+1=12tan−1t+c=12tan−1(sinx+cosx)+c=Atan−1(f(x))+B ( given )∴A=12,f(x)=sinx+cosx Now, A f(x)=12(sinx+cosx)=sinx+π4∴ range of Af(x) is [−1,1]