Q.

If A=1  1  11  1  11  1  1 then An for every positive integer n is

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

3n+1  3n+1  3n+13n+1  3n+1  3n+13n+1  3n+1  3n+1

b

3n−1  3n−1  3n−13n−1  3n−1  3n−13n−1  3n−1  3n−1

c

3n  3n  3n3n  3n  3n3n  3n  3n

d

3n−2  3n−2  3n−23n−2  3n−2  3n−23n−2  3n−2  3n−2

answer is B.

(Unlock A.I Detailed Solution for FREE)

Detailed Solution

the result by the principle of mathematical induction on n.Step1    When n=1, by the definition of integral powers of a matrix, we have               A1=A=1  1  11  1  11  1  1=31−1  31−1  31−131−1  31−1  31−131−1  31−1  31−1So, the result is true forn=1.Step2   Let the result be true forn=m .Then Am=3m−1  3m−1  3m−13m−1  3m−1  3m−13m−1  3m−1  3m−1                             ...(i)Now we shall show that the result is true for n=m+1, i.e.n=m+1Am+1=3m  3m  3m3m  3m  3m3m  3m  3mBy the definition of integral powers of a matrix, we have Am+1=Am·A=3m-13m-13m-13m-13m-13m-13m-13m-13m-1111111111=3m-1+3m-1+3m-13m-1+3m-1+3m-13m-1+3m-1+3m-13m-1+3m-1+3m-13m-1+3m-1+3m-13m-1+3m-1+3m-13m-1+3m-1+3m-13m-1+3m-1+3m-13m-1+3m-1+3m-1=3.3m-13.3m-13.3m-13.3m-13.3m-13.3m-13.3m-13.3m-13.3m-1=3m3m3m3m3m3m3m3m3mThis shows that the result is true for, whenever it is true forn=m Hence, by the principle of mathematical induction the result is valid for any positive  integer n.
Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon