If (x−a) cos θ+y sin θ=(x−a) cos ϕ+y sin ϕ=a and tan (θ/2)−tan (ϕ/2)=2b, then
see full answer
High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET
🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya
a
y2=2ax−1−b2x2
b
tanθ2=1x(y+bx)
c
y2=2bx−1−a2x2
d
tanϕ2=1x(y−bx)
answer is A.
(Unlock A.I Detailed Solution for FREE)
Best Courses for You
JEE
NEET
Foundation JEE
Foundation NEET
CBSE
Detailed Solution
Let tan (θ/2)=α and tan(ϕ/2)=β, so that α−β=2b.Also, cosθ=1−tan2(θ/2)1+tan2(θ/2)=1−α21+α2and sinθ=2tan(θ/2)1+tan2(θ/2)=2α1+α2Similarly, cosϕ=1−β21+β2 and sinϕ=2β1+β2Therefore, we have from the given relations(x−a)1−α21+α2+y2α1+α2=a⇒ xα2−2yα+2a−x=0Similarly xβ2−2yβ+2a−x=0We see that α and β are roots of the equationxz2−2yz+2a−x=0,So that α+β=2y/x and αβ=(2a−x)/x.Now, from (α+β)2=(α−β)2+4αβ, we get⇒ 2yx2=(2b)2+4(2a−x)x⇒ y2=2ax−1−b2x2Also, from α+β=2y/x and α−β=2b, we getα=y/x+b and β=y/x−b⇒ tanθ2=1x(y+bx) and tanϕ2=1x(y−bx)