Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If (x−a) cos⁡ θ+y sin⁡ θ=(x−a) cos⁡ ϕ+y sin⁡ ϕ=a and tan⁡ (θ/2)−tan⁡ (ϕ/2)=2b, then

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

y2=2ax−1−b2x2

b

tan⁡θ2=1x(y+bx)

c

y2=2bx−1−a2x2

d

tan⁡ϕ2=1x(y−bx)

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Let tan⁡ (θ/2)=α and tan⁡(ϕ/2)=β, so that α−β=2b.Also, cos⁡θ=1−tan2⁡(θ/2)1+tan2⁡(θ/2)=1−α21+α2and sin⁡θ=2tan⁡(θ/2)1+tan2⁡(θ/2)=2α1+α2Similarly,      cos⁡ϕ=1−β21+β2 and sin⁡ϕ=2β1+β2Therefore, we have from the given relations(x−a)1−α21+α2+y2α1+α2=a⇒ xα2−2yα+2a−x=0Similarly xβ2−2yβ+2a−x=0We see that α and β are roots of the equationxz2−2yz+2a−x=0,So that α+β=2y/x and αβ=(2a−x)/x.Now, from (α+β)2=(α−β)2+4αβ, we get⇒ 2yx2=(2b)2+4(2a−x)x⇒ y2=2ax−1−b2x2Also, from α+β=2y/x and α−β=2b, we getα=y/x+b and β=y/x−b⇒ tan⁡θ2=1x(y+bx) and tan⁡ϕ2=1x(y−bx)
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
If (x−a) cos⁡ θ+y sin⁡ θ=(x−a) cos⁡ ϕ+y sin⁡ ϕ=a and tan⁡ (θ/2)−tan⁡ (ϕ/2)=2b, then