Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If ∫1x(log⁡x)2−2log⁡x+102dx=154tan−1⁡(f(x))+3(log⁡x−1)g(x)+C then f(e)+g(e)=−−−

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

9

b

1

c

0

d

None

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

∫1x(log⁡x)2−2log⁡x+102dxlog⁡x=t⇒1xdx=dtI=∫1(t−1)2+92dt Put t−1=3tan⁡θdt=3sec2⁡θdθI=∫3sec2⁡θ9sec2⁡θ2dθ=127∫cos2⁡θdθ=127∫12+12cos⁡2θdθ=154θ+sin⁡2θ2+C=154tan−1⁡t−13+122tan⁡θ1+tan2⁡θ+C=154tan−1⁡t−13+3(t−1)t2−2t+10+Cf(x)=log⁡x−13,g(x)=(log⁡x)2−2log⁡x+10
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring