If ϕ(x) is a polynomial function and ϕ′(x)>ϕ(x) ∀x≥1 and ϕ(1)=0,then
ϕ(x)≥0 ∀x≥1
ϕ(x)<0 ∀x≥1
ϕ(x)=0 ∀x≥1
none of these
Given ϕ′(x)−ϕ(x)>0 ∀x≥1or e−xϕ′(x)−ϕ(x)>0 ∀x≥1or ddxe−xϕ(x)>0 ∀x≥1Therefore, e−xϕ(x)) is an increasing function ∀x≥1.Since ϕ(x) is a polynomial, e−xϕ(x)>e−1ϕ(1) or e−xϕ(x)>0 [∵ϕ(1)=0]or ϕ(x)>0