If x∈R, then f(x)=(x−1)2+(x−2)2+(x−3)2+ (x−4)2 assumes its minimum value at
see full answer
Your Exam Success, Personally Taken Care Of
1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya
a
10
b
2.5
c
20
d
40
answer is B.
(Unlock A.I Detailed Solution for FREE)
Best Courses for You
JEE
NEET
Foundation JEE
Foundation NEET
CBSE
Detailed Solution
The given equation is f(x)=(x−1)2+(x−2)2+(x−3)2+ (x−4)2 ⇒(x2+1−2x)+(x2+4−4x)+(x2+9−6x)+(x2+16−8x)⇒4x2−2 (1+2+3+4)x+30⇒4x2−20x+30⇒4(x2−5x)+30⇒4 {x2−5x+254}+30−25⇒ 4 (x−52)2+5Now, f(x) is minimum when (x−52)2 is minimumi.e. when (x−52)2 =0 ; when x= 52=2.5Alternatively,f(x) = (x−a1)2+(x−a2)2+...+(x−an)2Assumes minimum value at a1+a2+....+annf(x)=(x−1)2+(x−2)2+(x−3)2+ (x−4)2 ⇒ minimum value at x= 1+2+3+44=104=2.5