Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If ∫xtan−1⁡x1+x2dx=1+x2f(x)+Klog⁡x+x2+1+C then

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

f(x)=tan−1⁡x,K=−1

b

f(x)=tan−1⁡x,K=1

c

f(x)=2tan−1⁡x,K=−1

d

f(x)=2tan−1⁡x,K=1

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

∫x1+x2dx=12∫dtt=12⋅t1/2=t=1+x2                                                            [where 1 + x2 = t]we integrate by the parts, taking tan−1⁡x as the first function and x/1+x2 as the second.⇒∫xtan−1⁡x1+x2dx=tan−1⁡x1+x2−∫11+x2⋅1+x2dx=1+x2tan−1⁡x−∫dx1+x2=1+x2tan−1⁡x−log⁡x+x2+1+CThus f(x)=tan−1⁡x,K=−1.
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring