Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If x1, x2, x3  and y1, y2, y3  are both in GP with the same common ratio, then the points (x1, y1), (x2, y2)  and (x3, y3)

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

Lie on a straight line

b

Lie on an ellipse

c

Lie on a circle

d

Are vertices of a triangle

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

If x1, x2, x3  and y1, y2, y3  are in GP.Then let x2=rx1, x3=r2x1And y2=ry1, y3=r2y1With common ratio r , then the points are(x1, y1), (rx1, ry1)  and (r2x1, r2y1) .Now x1y11x2y21x3y31=x1y11rx1ry11r2x1r2y11=x1y1111rr1r2r21=x1y1(0)=0(Since two columns are identical)Thus these points lie on a straight line.Alternate SolutionLet x1=a⇒x2=ar  and x3=ar2And y=b⇒y2=br  and y3=br2Let the points are A(a, b), B(ar, br)  and C(ar2, br2) .Now slope of AB=b(r−1)a(r−1)=baAnd slope of BC=b(r2−r)a(r2−r)=ba∵   slope of AB= slope of BC⇒  AB∥BCBut B  is a common point.∴  A, B  and C  are collinear.i.e., the points (x1, y1), (x2, y2)  and (x3, y3)  lie on a straight line.
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring