Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If x→,y→  are two non-zero and non-collinear vectors satisfying  (a−2)α2+(b−3)α+cx→+(a−2)β2+(b−3)β+cy→+(a−2)γ2+(b−3)γ+c(x→×y→)=0 where α,β,γ are three distinct real numbers, then find the value of a2+b2+c2−4

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

answer is 9.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Since x→ and y→ are non-collinear vectors, therefore x→,y→ and x→×y→ are non-coplanar vectors. (a−2)α2+(b−3)α+c+(a−2)β2+(b−3)ββ+c]y→+(a−2)γ2+(b−3)γ+c(x→×y→)=0 Coefficient of each vector x→,y→ and x→×y→ is zero. (a−2)α2+(b−3)α+c=0(a−2)β2+(b−3)β+c=0(a−2)γ2+(b−3)β+c=0The above three equations will satisfy if the coefficients of α,β and  γ are zero because α,β and γ are three distinct real numbers .a−2=0 or a=2b−3=0 or b=3 and c=0∴ a2+b2+c2=22+32+02=4+9=13
Watch 3-min video & get full concept clarity

courses

No courses found

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon
If x→,y→  are two non-zero and non-collinear vectors satisfying  (a−2)α2+(b−3)α+cx→+(a−2)β2+(b−3)β+cy→+(a−2)γ2+(b−3)γ+c(x→×y→)=0 where α,β,γ are three distinct real numbers, then find the value of a2+b2+c2−4