Q.

If x→,y→  are two non-zero and non-collinear vectors satisfying  (a−2)α2+(b−3)α+cx→+(a−2)β2+(b−3)β+cy→+(a−2)γ2+(b−3)γ+c(x→×y→)=0 where α,β,γ are three distinct real numbers, then find the value of a2+b2+c2−4

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

answer is 9.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Since x→ and y→ are non-collinear vectors, therefore x→,y→ and x→×y→ are non-coplanar vectors. (a−2)α2+(b−3)α+c+(a−2)β2+(b−3)ββ+c]y→+(a−2)γ2+(b−3)γ+c(x→×y→)=0 Coefficient of each vector x→,y→ and x→×y→ is zero. (a−2)α2+(b−3)α+c=0(a−2)β2+(b−3)β+c=0(a−2)γ2+(b−3)β+c=0The above three equations will satisfy if the coefficients of α,β and  γ are zero because α,β and γ are three distinct real numbers .a−2=0 or a=2b−3=0 or b=3 and c=0∴ a2+b2+c2=22+32+02=4+9=13
Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon