Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

If x→,y→  are two non-zero and non-collinear vectors satisfying  (a−2)α2+(b−3)α+cx→+(a−2)β2+(b−3)β+cy→+(a−2)γ2+(b−3)γ+c(x→×y→)=0 where α,β,γ are three distinct real numbers, then find the value of a2+b2+c2−4

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

answer is 9.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Since x→ and y→ are non-collinear vectors, therefore x→,y→ and x→×y→ are non-coplanar vectors. (a−2)α2+(b−3)α+c+(a−2)β2+(b−3)ββ+c]y→+(a−2)γ2+(b−3)γ+c(x→×y→)=0 Coefficient of each vector x→,y→ and x→×y→ is zero. (a−2)α2+(b−3)α+c=0(a−2)β2+(b−3)β+c=0(a−2)γ2+(b−3)β+c=0The above three equations will satisfy if the coefficients of α,β and  γ are zero because α,β and γ are three distinct real numbers .a−2=0 or a=2b−3=0 or b=3 and c=0∴ a2+b2+c2=22+32+02=4+9=13
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring