Q.

If y=yx   is the solution of the equation esinycosydydx+esinycosx=cosx,y0=0; then 1+yπ6+32yπ3+12yπ4 is equal to __

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

answer is 1.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

The given differential equation is esinycosydydx+esinycosx=cosx,y0=0Suppose that   esiny=t⇒esinycosydydx=dtdxSubstitute the above values in the given differential equationdtdx+tcosx=cosxThis is linear differential equationHence the integrating factor is e∫cosxdx=esinx                        Solution is tesinx=∫esinx.cosxdx=esinx+c Hence, the solution for the given differential equation is esiny=1+ce−sinx,y0=0⇒c=0                                                                                 ⇒    esiny =1   ⇒ y=0Therefore, the expression 1+yπ6+32yπ3+12y(π4)=1+0=1
Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon