If for z as real or complex, 1+z2+z48=C0+C1z2+C2z4+⋯+C16z32, then
see full answer
Your Exam Success, Personally Taken Care Of
1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya
a
C0−C1+C2−C3+⋯+C16=1
b
C0+C3+C6+C9+C12+C15=37
c
C2+C5+C8+C11+C14=36
d
C1+C4+C7+C10+C13+C16=37
answer is A.
(Unlock A.I Detailed Solution for FREE)
Best Courses for You
JEE
NEET
Foundation JEE
Foundation NEET
CBSE
Detailed Solution
1+z2+z48=C0+C1z2+C2z4+⋯+C16z32 (1)Putting z = i, where i=−1,(1−1+1)8=C0−C1+C2−C3+⋯+C16or C0−C1+C2−C3+⋯+C16=1Also, putting z=ω,1+ω2+ω48=C0+C1ω2+C2ω4+⋯+C16ω32or C0+C1ω2+C2ω+C3+⋯+C16ω2=0 (2)Putting x=ω2,1+ω4+ω88=C0+C1ω4+C2ω8+⋯+C16ω64or C0+C1ω+C2ω2+⋯+C16ω=0 (3)Putting x = 1,38=C0+C1+C2+⋯+C16 (4)Adding (2), (3) and (4), we have3C0+C3+⋯+C15=38or C0+C3+⋯+C15=37Similarly, first multiplying (1) by z and then putting 1, ω, ω2 and adding, we getC1+C4+C7+C10+C13+C16=37Multiplying (1) by z2 and then putting 1, ω, ω2 and adding, we getC2+C5+C8+C11+C14=37