The integral ∫sec3/2θ−sec1/2θ2+tan2θtanθdθ is equal to
see full answer
Your Exam Success, Personally Taken Care Of
1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya
a
2tan−1(secθ+12secθ)+C
b
12loge|secθ−2secθ+1secθ+2secθ+1|+C
c
12tan−1|secθ+12secθ|+C
d
2loge|secθ−2secθ+1secθ+2secθ+1|+C
answer is B.
(Unlock A.I Detailed Solution for FREE)
Best Courses for You
JEE
NEET
Foundation JEE
Foundation NEET
CBSE
Detailed Solution
The given integral is I=∫(secθ−1)secθ1+sec2θtanθdθ =∫(secθ−1)secθtanθ(1+sec2θ)secθdθ Put secθ=t⇒12secθsecθtanθdθ=dt ∴I=∫(t2−1)1+t4.2dt =2∫1−1t2t2+1t2dt=2∫(1−1t2)dt(1+1t)2−2 Put t+1t=u⇒(1−1t2)dt=du ∴I=2∫duu2−2=222loge|u−2u+2|+C =12loge|t+1t−2t+1t+2|+C =12loge|t2−2t+1t2+2t+1|+C =12loge|secθ−2secθ+1secθ+2secθ+1|+C