Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

The integral∫π/6π/3tan3x·sin23x2sec2x·sin23x+3tanx·sin6xdx is equal to

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

−118

b

−19

c

92

d

718

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

∫π6π3tan3xsin23x2sec2xsin23x+3tanxsin6xdx=∫π6π3(2tan3xsin23xsec2xsin23x+3tan4xsin23x sin6x)dx=∫π6π34tan3xsec2x2sin43xdx+62tan4xsin23x.2sin3xcos3xdx     (∵sin6x=2sin3xcos3x)=∫π6π34tan3xsec2x2sin43xdx+122tan4xsin33xcos3xdx=12∫π6π3sin43x·4tan3xsec2xdx+12 tan4xsin33xcos3xdx -----(1)We can see thatddxtan4x sin43x =sin43x ddxtan4x+tan4x ddxsin43x                                                              =sin43x· 4tan3x sec2x+tan4x  4sin33xcos3x· 3  =12(tan4x sin43x)π6π3=12 (tanπ3)4 (sinπ)4- (tanπ6)4 (sinπ2)4=120-134·1=-118
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring