Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

The integral ∫3x13+2x11(2x4+3x2+1)4dx  is equal to (where C is a constant of integration)

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

x46(2x4+3x2+1)3+C

b

x126(2x4+3x2+1)3+C

c

x4(2x4+3x2+1)3+C

d

x12(2x4+3x2+1)3+C

answer is B.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

LetI=∫  3x13+2x11(2x4+3x2+1)4dx=∫  3x3+2x5(2+3x2+1x4)−4dx[On dividing numerator and denominator by x16]Now, put 2+3x2+1x4=t⇒(−6x3−4x5)dx=dt⇒(3x3+2x5)dx=−dt2So, I=∫  −dt2t4=−12×t−4+1−4+1+C=16t3+C=16(2+3x2+1x4)3+C [∵ t=2+3x2+1x4] =x126(2x4+3x2+1)3+C
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring