Q.

The integral ∫xxsinx+cosx2dx is equal to (where C is a constant of integration) :

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

tanx−xsecxxsinx+cosx+C

b

secx+xtanxxsinx+cosx+C

c

secx−xtanxxsinx+cosx+C

d

tanx+xsecxxsinx+cosx+C

answer is A.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

∫x2(xsinx+cosx)2dx  Multiply and divide by cosx  =∫xcosx·xcosx(xsinx+cosx)2dx Integration by parts=xcosx∫xcosx(xsinx+cosx)2dx-∫ddxxcosx-∫xcosx(xsinx+cosx)2dxdx                                 put xsinx+cosx=t                                ⇒(xcosx+sinx-sinx)dx=dt                                  ⇒ xcosx dx=dt=xcosx·-1(xsinx+cosx)+∫cosx+xsinxcos2x·1(xsinx+cosx)dx=-xcosx(xsinx+cosx)+tanx+C=tanx-xsecxxsinx+cosx+C
Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon