Q.
The integral ∫xxsinx+cosx2dx is equal to (where C is a constant of integration) :
see full answer
Start JEE / NEET / Foundation preparation at rupees 99/day !!
21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya
a
tanx−xsecxxsinx+cosx+C
b
secx+xtanxxsinx+cosx+C
c
secx−xtanxxsinx+cosx+C
d
tanx+xsecxxsinx+cosx+C
answer is A.
(Unlock A.I Detailed Solution for FREE)
Ready to Test Your Skills?
Check your Performance Today with our Free Mock Test used by Toppers!
Take Free Test
Detailed Solution
∫x2(xsinx+cosx)2dx Multiply and divide by cosx =∫xcosx·xcosx(xsinx+cosx)2dx Integration by parts=xcosx∫xcosx(xsinx+cosx)2dx-∫ddxxcosx-∫xcosx(xsinx+cosx)2dxdx put xsinx+cosx=t ⇒(xcosx+sinx-sinx)dx=dt ⇒ xcosx dx=dt=xcosx·-1(xsinx+cosx)+∫cosx+xsinxcos2x·1(xsinx+cosx)dx=-xcosx(xsinx+cosx)+tanx+C=tanx-xsecxxsinx+cosx+C
Watch 3-min video & get full concept clarity