The integral ∫xxsinx+cosx2dx is equal to (where C is a constant of integration) :
see full answer
Your Exam Success, Personally Taken Care Of
1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya
a
tanx−xsecxxsinx+cosx+C
b
secx+xtanxxsinx+cosx+C
c
secx−xtanxxsinx+cosx+C
d
tanx+xsecxxsinx+cosx+C
answer is A.
(Unlock A.I Detailed Solution for FREE)
Best Courses for You
JEE
NEET
Foundation JEE
Foundation NEET
CBSE
Detailed Solution
∫x2(xsinx+cosx)2dx Multiply and divide by cosx =∫xcosx·xcosx(xsinx+cosx)2dx Integration by parts=xcosx∫xcosx(xsinx+cosx)2dx-∫ddxxcosx-∫xcosx(xsinx+cosx)2dxdx put xsinx+cosx=t ⇒(xcosx+sinx-sinx)dx=dt ⇒ xcosx dx=dt=xcosx·-1(xsinx+cosx)+∫cosx+xsinxcos2x·1(xsinx+cosx)dx=-xcosx(xsinx+cosx)+tanx+C=tanx-xsecxxsinx+cosx+C