Q.

L=limx→0 sin⁡x+aex+be−x+cln⁡(1+x)x3=∞The value of L isEquation ax2 + bx + c = 0 hasThe solution set of ||x+c|−2a|<4b is

see full answer

Start JEE / NEET / Foundation preparation at rupees 99/day !!

21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya

a

1 /2

b

-1 /3

c

-1/6

d

3

e

real and equal roots

f

complex roots

g

unequal positive real roots

h

unequal roots

i

[-2,2]

j

[0,2]

k

[-1,1]

l

[-2,1]

answer is , , .

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

L=limx→0 sin⁡x+aex+be−x+cln⁡(1+x)x3=limx→0 x−x33!+a1+x1!+x22!+x33!+b1−x1!+x22!−x33!+cx−x22+x33x3=limx→0 (a+b)+(1+a−b+c)x+a2+b2−c2x2+−13!+a3!−b3!+c3x3x3or a+b=0,1+a−b+c=0,a2+b2−c2=0and L=−13!+a3!−b3!+c3Solving the first three equations, we get c = 0, a = -1/2, b = 1/2.Then, L = - 1/3.Equation ax2 + bx + c = 0 reduces to x2 -x=0 or x=0, 1.||x+c|−2a|<4b reduces to ∥x|+1|<2 or     −2<|x|+1<2 or     0≤|x|<1 or     x∈[−1,1]
Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon