Let a→ and b→ be two vectors such that |a→|=1,|b→|=4 and a→⋅b→=2. If c→=(2a→×b→)−3b→ then find the angle between
see full answer
High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET
🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya
a
π3
b
π6
c
3π4
d
5π6
answer is D.
(Unlock A.I Detailed Solution for FREE)
Best Courses for You
JEE
NEET
Foundation JEE
Foundation NEET
CBSE
Detailed Solution
|a→|=1,|b→|=4,a→⋅b→=2c→=(2a→×b→)−3b→ or c→+3b→=2a→×b→∵ a→⋅b→=2⇒ |a→|⋅|b→|cosθ=2or cosθ=2|a→|⋅|b→|=24=12or θ=π3or θ=π3⇒ |c→+3b→|2=|2a→×b→|2or |c→|2+9|b→|2+2c→⋅3b→=4|a→|2|b→|2sin2θor |c→|2+144+6b→⋅c→=48or |c→|2+96+6(b→⋅c→)=0------ior c→=2a→×b→−3b→⇒b→⋅c→=0−3×16=−48Putting value of b b→c→ in Eq. (i), we have|c→|2+96−6×48=0=48×4=192Again, putting the value of c→ in Eq. (i), we have 192+96+6|b→|⋅|c→|cosα=0or 6×4×83cosα=−288or cosα=−2886×4×83=−323=−32or α=5π6