Q.
Let a→ and b→ be two vectors such that |a→|=1,|b→|=4 and a→⋅b→=2. If c→=(2a→×b→)−3b→ then find the angle between
see full answer
Start JEE / NEET / Foundation preparation at rupees 99/day !!
21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya
a
π3
b
π6
c
3π4
d
5π6
answer is D.
(Unlock A.I Detailed Solution for FREE)
Ready to Test Your Skills?
Check your Performance Today with our Free Mock Test used by Toppers!
Take Free Test
Detailed Solution
|a→|=1,|b→|=4,a→⋅b→=2c→=(2a→×b→)−3b→ or c→+3b→=2a→×b→∵ a→⋅b→=2⇒ |a→|⋅|b→|cosθ=2or cosθ=2|a→|⋅|b→|=24=12or θ=π3or θ=π3⇒ |c→+3b→|2=|2a→×b→|2or |c→|2+9|b→|2+2c→⋅3b→=4|a→|2|b→|2sin2θor |c→|2+144+6b→⋅c→=48or |c→|2+96+6(b→⋅c→)=0------ior c→=2a→×b→−3b→⇒b→⋅c→=0−3×16=−48Putting value of b b→c→ in Eq. (i), we have|c→|2+96−6×48=0=48×4=192Again, putting the value of c→ in Eq. (i), we have 192+96+6|b→|⋅|c→|cosα=0or 6×4×83cosα=−288or cosα=−2886×4×83=−323=−32or α=5π6
Watch 3-min video & get full concept clarity