Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let Δ=−bcb2+bcc2+bca2+ac−acc2+aca2+abb2+ab−ab and the equation px3+qx2+rx+s=0 has roots a, b, c, where a, b, c∈R+.The value of Δ isThe value of ∆ isIf Δ=27, and a2 + b2 + c2 = 3, then

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

r2/p2

b

r3/p3

c

- s/p

d

none of these

e

≤9r2/p2

f

≥27s2/p2

g

≤27s3/p3

h

none of these

i

3p + 2q = 0

j

4p + 3q = 0

k

3p + q = 0

l

none of these

answer is , , .

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Multiplying R1, R2, R3 by a, b, c, respectively, and then taking a, b, c common from C1, C2, and C3, we getΔ=−bcab+acac+abab+bc−acbc+abac+bcbc+ac−abNow, using C2→C2−C1 and C3→C3−C1, and then taking ( ab + bc + ca) common from C2 and C3, we getΔ=−bc11ab+bc−10ac+bc0−1×(ab+bc+ca)2Now, applying R2→R2+R1, we getΔ=−bc11ab01ac+bc0−1(ab+bc+ca)2Expanding along C2, we getΔ=(ab+bc+ca)2[ac+bc+ab]  =(ab+bc+ca)3  =(r/p)3=r3/p3Now given a, b, c are all positive, then A.M. ≥ G.M. ⇒ ab+bc+ac3≥(ab×bc×ac)1/3or   (ab+bc+ac)3≥27a2b2c2or   (ab+bc+ac)3≥27s2/p2If Δ=27, then ab + bc + ca = 3, and given that a2 + b2 + c2 = 3, from (a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca), we havea+b+c=±3⇒    a+b+c=3           ∵a, b, c∈R+⇒    3p+q=0Multiplying R1, R2, R3 by a, b, c, respectively, and then taking a, b, c common from C1, C2, and C3, we getΔ=−bcab+acac+abab+bc−acbc+abac+bcbc+ac−abNow, using C2→C2−C1 and C3→C3−C1, and then taking ( ab + bc + ca) common from C2 and C3, we getΔ=−bc11ab+bc−10ac+bc0−1×(ab+bc+ca)2Now, applying R2→R2+R1, we getΔ=−bc11ab01ac+bc0−1(ab+bc+ca)2Expanding along C2, we getΔ=(ab+bc+ca)2[ac+bc+ab]  =(ab+bc+ca)3  =(r/p)3=r3/p3Now given a, b, c are all positive, then A.M. ≥ G.M. ⇒ ab+bc+ac3≥(ab×bc×ac)1/3or   (ab+bc+ac)3≥27a2b2c2or   (ab+bc+ac)3≥27s2/p2If Δ=27, then ab + bc + ca = 3, and given that a2 + b2 + c2 = 3, from (a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca), we havea+b+c=±3⇒    a+b+c=3           ∵a, b, c∈R+⇒    3p+q=0Multiplying R1, R2, R3 by a, b, c, respectively, and then taking a, b, c common from C1, C2, and C3, we getΔ=−bcab+acac+abab+bc−acbc+abac+bcbc+ac−abNow, using C2→C2−C1 and C3→C3−C1, and then taking ( ab + bc + ca) common from C2 and C3, we getΔ=−bc11ab+bc−10ac+bc0−1×(ab+bc+ca)2Now, applying R2→R2+R1, we getΔ=−bc11ab01ac+bc0−1(ab+bc+ca)2Expanding along C2, we getΔ=(ab+bc+ca)2[ac+bc+ab]  =(ab+bc+ca)3  =(r/p)3=r3/p3Now given a, b, c are all positive, then A.M. ≥ G.M. ⇒ ab+bc+ac3≥(ab×bc×ac)1/3or   (ab+bc+ac)3≥27a2b2c2or   (ab+bc+ac)3≥27s2/p2If Δ=27, then ab + bc + ca = 3, and given that a2 + b2 + c2 = 3, from (a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca), we havea+b+c=±3⇒    a+b+c=3           ∵a, b, c∈R+⇒    3p+q=0
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon