Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let α and β be the distinct roots of ax2+bx+c=0 then the value of limx→α 1−cos⁡ax2+bx+c(x−α)2 is

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

a22(α−β)2

b

0

c

a22(α+β)2

d

12(α−β)2

answer is A.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

limx→α 1−cos⁡ax2+bx+c(x−α)2as α and β are two distinct roots.∴ ax2+bx+c=a(x−α)(x−β) i.e.  α,β=−b±b2−4ac2a =limx→α 1−cos⁡[(x−α)(x−β)a](x−u)2=limx→α 2sin2⁡[(x−α)(x−β)a]2(x−α)2=limx→α 2sin2⁡[(x−α)(x−β)a]2(x−α)(x−β)a22a2x−β42=limx→α 24a2(x−β)2=a22(α−β)2
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon