Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let α∈0,π2 be fixed. If ∫sin⁡(x+α)sin⁡(x−α)dx=f1(x)cos⁡2α+f2(x)sin⁡2α+c where c constant of integration then

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

f1(x)=x−α,   f2(x)=logesin(x+α)

b

f1(x)=x+α,  f2(x)=logesin(x−α)

c

f1(x)=x−α,  f2(x)=logesin(x−α)

d

f1(x)=x+α,  f2(x)=logesin(x+α)

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

∫sin⁡(x+α)sin⁡(x−α)dx=∫sin⁡(x−α+2α)sin⁡(x−α)dx Put x−α=θ⇒dx=dθ=∫sin⁡(θ+2α)sin⁡θdθ =cos⁡2α∫dθ+sin⁡2α∫cos⁡θsin⁡θdθ=cos⁡2α⋅(x−α)+sin⁡2αlog⁡|sin⁡(x−α)|+c
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring