Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let α1, β1 be the roots of x2−6x+p=0 and α2, β2 be the roots of x2−54x+q=0. If α1, β1, α2, β2 form an increasing G.P., then the value of (q - p) is _________.

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

answer is 540.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Let α1=A, β1=AR, α2=AR2, β2=AR3we have α1+β1=6⇒A(1+R)=6           ….. (1)α1β1=p⇒A2R=p                                   …… (2)Also α2+β2=54⇒AR2(1+R)=54        ……. (3)α2β2=q⇒A2R5=q                                 …….. (4)Now, on dividing Eq. (3) by Eq. (1), we getAR2(1+R)A(1+R)=546=9  or  R2=9∴ R=3 (as it is an increasing G.P.)∴ On putting R - 3 in Eq. (1), we getA=64=32∴ p=A2R=94×3=274and q=A2R5=94×243=21874Hence, q−p=2187−274=21604=540
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring
Let α1, β1 be the roots of x2−6x+p=0 and α2, β2 be the roots of x2−54x+q=0. If α1, β1, α2, β2 form an increasing G.P., then the value of (q - p) is _________.