Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let α and α2 be the roots ofx2+x+1=0 then the equation whose roots are α31 and α62, is

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

x2−x+1=0

b

x2+x−1=0

c

x2+x+1=0

d

x60+x30+1=0

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

Since, α,α2 be the roots of the equation x2+x+1=0∴     α+α2=−1 and     α3=1    ...(i)  Now,     α31+α62=α311+α31⇒    α31+α62=α30⋅α1+α30⋅α⇒    α31+α62=α310⋅α1+α310⋅α⇒    α31+α62=α(1+α)     [from Eq. (ii)] ⇒    α31+α62=−1    [ from Eq. (i)]  Again,      α31⋅α62=α93⇒    α31⋅α62=α331=1∴ Required equation is,x2−α31+α62x+α31⋅α62=0⇒x2+x+1=0
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring
Let α and α2 be the roots ofx2+x+1=0 then the equation whose roots are α31 and α62, is