Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let C1  be the curve obtained by the solution of the differential equation 2xydydx=y2−x2Let the curve C2 be the solution of 2xyx2−y2=dydx.If both curves pass through the point 1,1,then the area enclosed by the curve C1  and C2  is equal to

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

π−1

b

π4+1

c

π2−1

d

π+1

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

The given differential equation dydx=y2-x22xy, it is homogeneous equation.  Put y=vxv+xdvdx=v2x2-x22vx2=v2-12vxdvdx=v2-1-2v22v=-v2+12v⇒2vv2+1dv=-dxxlnv2+1=-ℓnx+lnc⇒v2+1=cx⇒y2x2+1=cx⇒x2+y2=cx If pass through (1,1)  ∴x2+y2-2x=0Similarly second differential equation is dxdy=x2−y22xyEquation of curve is x2+y2−2y=0 Area of the region required is equal to the double the ( area of the quarter circle - area of the triangle )=14×π×12−12×1×1×2=π2−1 square units
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring
Let C1  be the curve obtained by the solution of the differential equation 2xydydx=y2−x2Let the curve C2 be the solution of 2xyx2−y2=dydx.If both curves pass through the point 1,1,then the area enclosed by the curve C1  and C2  is equal to