Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let the curve y=y(x) be the solution of the differential equation, dydx=2(x+1) . If the  numerical value of area bounded by the curve y=y(x) and x- axis is 483, then the  value of y1=

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

answer is 2.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

The given differential equation is dydx=2x+1integrate both sides ∫dy=∫2x+1dxy=x+12−c2     Here −c2 is constant of integrationto get the point of intersection of the curve and x−axis plug in y=0x+12=c2x=−1±cThe area of the region bounded by the curve and x−axis is 483=∫−1−c−1+cx+12−c2dx=x+133−c2x−1−c−1+c=2c33−2c3=4c33c3=8c=2Therefore, the equation of curve is y=x+12−2hence, y1=4−2=2
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring