Q.
Let E1=X∈ℝ:x≠1 and xx−1>0 and E2=X∈ℝ1:sin−1logexx−1is a real number (Here, the inverse trigonometric function sin−1x assumes values in−π2,π2.Let f:E1→ℝ be function defined by fx=logexx−1 and g:E2→ℝ be the function defined by g(x)=sin−1(logxx−1.) LIST-I LIST-II P. The range of f is 1. −∞,11−e∪ee−1,∞ Q. The range of g contains 2. (0, 1) R. The domain of f contains 3.. −12,12 S. The domain of g is 4.−∞,0∪0,∞ 5. −∞,ee−1 6. −∞,0∪12,ee−1
see full answer
Start JEE / NEET / Foundation preparation at rupees 99/day !!
21% of IItians & 23% of AIIMS delhi doctors are from Sri Chaitanya institute !!
An Intiative by Sri Chaitanya
a
P-3;Q-3;R-6;S-5
b
P-4;Q-2;R-1;S-6
c
P-4;Q-3;R-6;S-5
d
P-4;Q-2;R-1;S-1
answer is D.
(Unlock A.I Detailed Solution for FREE)
Ready to Test Your Skills?
Check your Performance Today with our Free Mock Test used by Toppers!
Take Free Test
Detailed Solution
E1:xx-1>0⇒xx-1>0⇒E1: :x∈(-∞,0)∪(1,∞)E2:-1≤lnxx+1≤11e≤xx-1≤e Now xx-1-1e≥0⇒(e-1)x+1e(x-1)≥0e-1x+1≥0e-1x≥-1x≤11-eand xx-1-e≤0 x-ex+ex-1≤0 x1-e+ex-1≤0 x1-e≤-e x≥ee-1Therefore, E2:-∞,11-e∪ee-1,∞
Watch 3-min video & get full concept clarity