Let E1=X∈ℝ:x≠1 and xx−1>0 and E2=X∈ℝ1:sin−1logexx−1is a real number (Here, the inverse trigonometric function sin−1x assumes values in−π2,π2.Let f:E1→ℝ be function defined by fx=logexx−1 and g:E2→ℝ be the function defined by g(x)=sin−1(logxx−1.) LIST-I LIST-II P. The range of f is 1. −∞,11−e∪ee−1,∞ Q. The range of g contains 2. (0, 1) R. The domain of f contains 3.. −12,12 S. The domain of g is 4.−∞,0∪0,∞ 5. −∞,ee−1 6. −∞,0∪12,ee−1
see full answer
Your Exam Success, Personally Taken Care Of
1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya
a
P-3;Q-3;R-6;S-5
b
P-4;Q-2;R-1;S-6
c
P-4;Q-3;R-6;S-5
d
P-4;Q-2;R-1;S-1
answer is D.
(Unlock A.I Detailed Solution for FREE)
Best Courses for You
JEE
NEET
Foundation JEE
Foundation NEET
CBSE
Detailed Solution
E1:xx-1>0⇒xx-1>0⇒E1: :x∈(-∞,0)∪(1,∞)E2:-1≤lnxx+1≤11e≤xx-1≤e Now xx-1-1e≥0⇒(e-1)x+1e(x-1)≥0e-1x+1≥0e-1x≥-1x≤11-eand xx-1-e≤0 x-ex+ex-1≤0 x1-e+ex-1≤0 x1-e≤-e x≥ee-1Therefore, E2:-∞,11-e∪ee-1,∞