Let f(n)=1+12+13+…+1n, then (f(1)+f(2)+f(3)+…+f(n)
see full answer
Your Exam Success, Personally Taken Care Of
1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya
a
nf(n)−1
b
(n+1)f(n)−n
c
(n+1)f(n)+n
d
nf(n)+n
answer is B.
(Unlock A.I Detailed Solution for FREE)
Best Courses for You
JEE
NEET
Foundation JEE
Foundation NEET
CBSE
Detailed Solution
We have f(n)=1+12+13+…+1n∴ f(1)+f(2)+…+f(n)=1+1+12+1+12+13+…+1+12+13+…+1n=n+(n−1)2+(n−2)3+…+n−(n−1)n=n1+12+13+…+1n−12+23+…+n−1n=n1+12+13+…+1n−1−12+1−13+…+1−1n=n1+12+13+…+1n−(n−1)−12+13+…+1n=nf(n)−{(n−1)−(f(n)−1)}=(n+1)f(n)−n