Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let fn(x)=1xn, for all xεR-{0}, where nεN and g(x)=max.f2(x),f3(x),12, for  all xεR-{0} . Then match the following COLUMN –I

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

b

c

d

answer is .

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

a)   G⋅E=sin2θ+sin4θ+sin6θ+....+cos2θ+cos4θ+cos6θ+....         =sin2θ1-sin2θ+cos2θ1-cos2θ=tan2⁡θ+cot2⁡θ≥2  since A.M≥G.M b) if n is odd    take n=1⇒f1x Sgnx= 1x Sgnx= 1x if x>0                                                                                                         = -1x if x<0  ,    which is an even function.  c   g(x)=1x3,12≤x≤11x2,1≤x≤212,2≤x≤2  gx  is not differentiable at x=1,2 d) ∫122 g(x)dx=∫1211x3dx+∫121x2dx+∫2212dx=72−2 lies between 2,3
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring