Q.

Let f:0,1→R be a double differentiable function with f0=f1=0 and f"x+2f'x+fx≥0 ∀ x∈0,1 then

see full answer

Talk to JEE/NEET 2025 Toppers - Learn What Actually Works!

Real Strategies. Real People. Real Success Stories - Just 1 call away
An Intiative by Sri Chaitanya

a

fx≤0  ∀  x∈0,1

b

if exfx assumes its minimum value in [0, 1] at x=12then fx+f'x<0  ∀x∈0,12

c

If gx=exfx then number of real solution of the equation  gggx=0 is 2

d

fx>0  ∀x∈0,1

answer is A.

(Unlock A.I Detailed Solution for FREE)

Ready to Test Your Skills?

Check your Performance Today with our Free Mock Test used by Toppers!

Take Free Test

Detailed Solution

Given f(x)ex''=exf"x+2f'x+fx≥0,  So, f(x)ex is concave  and f0=0 and f1=0∴fx≤0 ∀x∈0,1 option 2:if fxex has minimum at x=12 then fxex'=exfx+f'x=0 at x=12   and fx+f'x <0 for x∈0,12  and  fx+f'x >0 for x∈12,1 option3: since f0=0 ⇒g0=e0f0=0 and gg0=0 ,ggg0=0similarly f1=0 ⇒ggg1=0
Watch 3-min video & get full concept clarity
score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon