Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let f:R→R be a continuously differentiable function such that f(3)=5 and f'(3)=115 . If ∫5f(x)3t2dt=(x-3)g(x) , then limx→3g(x) is equal to

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

0

b

3

c

5

d

15

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

limx→3gx=limx→3∫5f(x)3t2 dtx−3                                =limx→3d dx∫5f(x)3t2dt1     by LH rule                                                =limx→33( f(x))2·f'(x)1  by Newton's Leibnitz rule                     =3f(3)2f'(3)=3×52×115=5
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring