Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let f:R+→R be a differentiable function satisfying f(x)=e+(1-x)lnxe+∫1xf(t)dt, for all xεR+. If the area enclosed by the curve gx=xfx-ex lying in the fourth quadrant is A, then A=

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

12

b

13

c

14

d

23

answer is C.

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

f'x=0+1-x1x+lnxe-1+fx by newton's Leibnitz rule   ⇒f'x=1x-1+lnx-1-1+fx ⇒dydx-y=1x−ln⁡x ⇒y e-x=∫1x−ln⁡xe-xdx    solving of linear differential equation ⇒ye-x=e-xlogx+c   since f1=e⇒ee-1=0+c⇒c=1     y=logx+exf(x)=ex+ln⁡x  ⇒gx=xfx-ex=xlnxArea=A=∫01 xln⁡xdx=14
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring