Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let  f:R→R be a real function. The function f is double differentiable. If there exists n∈N  and p∈R such that limx→∞xn f(x) = p and there exists limx→∞xn+1 f(x), thenlimx→∞xn+1 f' is equal tolimx→∞xn+1 f'' (x) is equal to

see full answer

Your Exam Success, Personally Taken Care Of

1:1 expert mentors customize learning to your strength and weaknesses – so you score higher in school , IIT JEE and NEET entrance exams.
An Intiative by Sri Chaitanya

a

-np

b

np

c

n2p

d

np2

e

np(1-n)

f

-np(1+n)

g

n2p

h

np(1+n)

answer is , .

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

We  have  limx→∞  xnfx=p⇒    limx→∞ xn+1fxx=pUsing  L'Hospital  rule,  we get       limx→∞  n+1xnfx+xn+1f'x1=p⇒    n+1p+  limx→∞  xn+1f'x=p⇒  limx→∞  xn+1  f'x=-npFurther  limx→∞.  xn+2f'xx=-npUsing  L'Hospital  rule,  we  get            limx→∞  n+2xx+1f'x+xn+2f''x1=-np⇒        -npn+2+ limx→∞  xn+2f''x=-np⇒          limx→∞   xn+2f'' x =np1+nWe  have  limx→∞  xnfx=p⇒    limx→∞ xn+1fxx=pUsing  L'Hospital  rule,  we get       limx→∞  n+1xnfx+xn+1f'x1=p⇒    n+1p+  limx→∞  xn+1f'x=p⇒  limx→∞  xn+1  f'x=-npFurther  limx→∞.  xn+2f'xx=-npUsing  L'Hospital  rule,  we  get            limx→∞  n+2xx+1f'x+xn+2f''x1=-np⇒        -npn+2+  limx→∞ xn+2f''x=-np⇒          limx→∞   xn+2f'' x =np1+n
Watch 3-min video & get full concept clarity
score_test_img

courses

No courses found

Get Expert Academic Guidance – Connect with a Counselor Today!

best study material, now at your finger tips!

  • promsvg

    live classes

  • promsvg

    progress tracking

  • promsvg

    24x7 mentored guidance

  • promsvg

    study plan analysis

download the app

gplay
mentor

Download the App

gplay
whats app icon
personalised 1:1 online tutoring