Banner 0
Banner 1
Banner 2
Banner 3
Banner 4
Banner 5
Banner 6
Banner 7
Banner 8
Banner 9

Q.

Let F:R→R be thrice differentiable function. Suppose that F(1)=0,F(3)=−4 and F′(x)<0 for all x∈(1/2,3) , Let f(x)=xF(x) for all x∈RThe correct statement (s) is (are) If ∫13 x2F′(x)dx=−12 and ∫13 x3F′′(x)dx=40, then the correct expression(s) is (are)

see full answer

High-Paying Jobs That Even AI Can’t Replace — Through JEE/NEET

🎯 Hear from the experts why preparing for JEE/NEET today sets you up for future-proof, high-income careers tomorrow.
An Intiative by Sri Chaitanya

a

f′(1)<0

b

f(2)<0

c

f′(x)≠0 for any x∈(1,3)

d

f′(x)=0 for some x∈(1,3)

e

9f′(3)+f′(1)−32=0

f

∫13 f(x)dx=12

g

9f′(3)−f′(1)+32=0

h

∫13 f(x)dx=−12

answer is , .

(Unlock A.I Detailed Solution for FREE)

Best Courses for You

JEE

JEE

NEET

NEET

Foundation JEE

Foundation JEE

Foundation NEET

Foundation NEET

CBSE

CBSE

Detailed Solution

f(1)=0,F(3)=−4f(x)=x×F(x)⇒f(1)=0,f(3)=−12,F1(x)<0,∀x∈(1/2,3)f′x=xF′(x)+F(x) (A) f1(x)=xF1(1)+0<0 (B) Since F1(x)<0,F(x) is decreasing in 13,3F(1)=0,F(3)=−4⇒F(2)<0⇒f(2)=2F(2)<0 (C) F(x) is decreasing ⇒F(x)<0 in (1,3)f′x=xF′(x)+F(x)<0 in (1,3) (D) f1(x)=0 for some x∈(1,3) is wrong. x2F1(x)=xf1(x)−xF(x)=xf1(x)−f(x)∫13 x2F1(x)=−12⇒∫13 xf1(x)−f(x)dx=−12⇒(xf(x)]13−2∫13 f(x)dx=−12⇒∫13 f(x)dx=12(−36+12)=−12∫13 x3F11(x)dx=∫13 x2f11(x)−2xf1(x)+2f(x)dx=40⇒9f1(3)−f1(1)+32=0
Watch 3-min video & get full concept clarity

courses

No courses found

score_test_img

Get Expert Academic Guidance – Connect with a Counselor Today!

whats app icon